

Progress Report on the IAEA-CRP No. 13278

S. A. Jonah¹, U Sadiq² 1 REACTOR ENGINEERING SECTION CENTRE FOR ENERGY RESEARCH AND TRAINING, AHMADU BELLO UNIVERSITY, ZARIA

2 DEPARTMENT OF PHYSICS AHMADU BELLO UNIVERSITY, ZARIA

OUTLINE OF PRESENTATION

- Introduction
- Status report on work performed in the last year
 - Testing of k0-IAEA software using SMELS Neutron spectrum characterization using MCNP Measurements of σ_o,Q_o
 Conclusions
- Acknowledgement
 3rd RCM, NOV. 17 19, 2008

INTRODUCTION-CRP Plan as at 1st RCM

- □ Improve and validate methods for n-spectrum parameters
 - Acquisition of codes (MCNP5)
- □ Develop methodologies for accurate measurement of fission neutron σ_{ave}
 - Comparison with data libraries
- □ Re-measure constants (σ₀, Q₀) for NAA
 As specified by CRP
- □ Testing of the k0-IAEA software
 - Using SRMs

1st RCM, 2005

INTRODUCTION-work done in years 1&2

- Participation in proficiency tests
- Characterization of NIRR-1 irradiation sites by experiment
- Detector calibration
- Determination of reactor neutron spectrum averaged cross section $\sigma_{\rm f}$
- Installation & testing of the k0-IAEA Program
- Installation of MCNP5 & development of input model for NIRR-1

- SCOPE OF WORK FOR THIRD YEAR
- Validation of NIRR-1 MCNP model for accurate neutron spectrum characterization using GRUPINT
- Finalize the testing of the k0-IAEA Program using SMELS
- Development of procedures for measurements of discrepant nuclear data

Results of SMELS by k0-IAEA Program

Ratio

Results of SMELS by k0-IAEA Program

3rd RCM, NOV. 17 - 19, 2008

Results of SMELS by k0-IAEA Program

Summary of SMELS Analysis

- □ SMELS were subjected to NIRR-1 routine procedures
- □ For SMELS I S1 & L2 were used
- □ For SMELS II & III, the 4 protocols were used
- Overall, results compare well with relative method (WINSPAN) and RVs
- □ For SMELS I, Cl & I are slightly higher than RVs
- □ For SMELS II, results are ok within limit of expt
- □ For SMELS III,
 - Se is far off RV
 - Sr & Th are slightly lower than RV
 - In value is higher than RV
- □ The k0-IAEA program has been successfully installed and tested with NIRR-1 facilities.

Neutron Spectrum Characterization

- Experimental and computational protocols were deployed for NIRR-1
- □ Measured data of f & α have been presented at 2nd RCM
- □ MCNP model of NIRR-1 has been developed -2^{nd} RCM
- □ Data of activation foils were sent to A. Trkov

- Neutron spectrum shape for NIRR-1 have been derived by GRUPINT semi-empirically
- □ In the 3rd year a theoretical method was used to determine neutron spectrum data
- □ It is based on MCNP neutron spectrum and cross section data in 640 energy group structure, energy bin is relatively small

Neutron Spectrum Data by MCNP

□ RR energy-dependent neutron flux density, $\varphi(E)$, for reaction with $\sigma(E)$ is given below as:

$$R = \int_{0}^{\infty} \varphi(E) \sigma(E) dE \qquad (1)$$

- For 640 energy group structure, energy bin is relatively small $R = \sum_{0}^{\infty} \varphi(E)\sigma(E) \qquad (2)$
- **The** $\phi(E)$ data were obtained from the standard MCNP output
- \Box $\sigma(E)$ data for (n,γ) reaction retrieved from ENDF-VI data libraries from the NDS, IAEA, Vienna, Austria.

 $\square \quad \begin{array}{l} R_{Cd} \ data \ were \ calculated \\ for \quad E_{Cd} = 0.55 \ eV \end{array}$

A Comparison of MCNP Simulated Energy Dependent Neutron Flux in Inner and Outer Channels of NiR-1

3rd Rienn, Fregrimev17 - 19, 2008

Cross section for 197Au(n,g)198Au Reaction

Neutron Energy (MeV)

3rd RCM, NOV. 17 - 19, 2008

A comparison of RCd in inner channel

Reaction	R _{Cd} Inner irradiation channel			
	Measured	GRUPINT	This work	
$^{197}Au(n,\gamma)^{198}Au$	2.12±0.02	2.13	2.01±0.07	
55 Mn(n, γ) 56 Mn	17.4±1.9	-	17.3±1.7	
64 Zn(n, γ) 65 Zn	8.15±0.16	8.43	_	
68 Zn(n, γ) 69m Zn	5.63±0.08	5.70	-	
94 Zr(n, γ) 95 Zr	3.33±0.08	3.29	-	
235 U(n, γ) 239 U	-	-	1.15±0.03	
232 Th(n, γ) 233 Th	-	-	2.02±0.06	
⁵⁸ Co(n,γ) ⁵⁹ Co	-	-	8.05±0.85	

A comparison of Rcd in outer channel

Reaction	R _{Cd} Outer irradiation channel				
	Measured	GRUPINT	Theory		
$^{197}\mathrm{Au}(\mathrm{n},\gamma)^{198}\mathrm{Au}$	4.27±0.06	4.68	4.12±0.11		
55 Mn(n, γ) 56 Mn	58.1±2.9	-	58.1±2.7		
64 Zn(n, γ) 65 Zn	31.3±1.0	31.4	-		
68 Zn(n, γ) 69m Zn	18.8±0.7	18.2	-		
94 Zr(n, γ) 95 Zr	12.7±0.7	11.9	-		
235 U(n, γ) 239 U	1.51±0.04	-	1.49±0.07		
232 Th(n, γ) ²³³ Th	-	-	4.68±0.16		
⁵⁸ Co(n,γ) ⁵⁹ Co	-	-	29.9±1.4		

A comparion of neutron spectrum data

•Parameters		•α		•f	
		•Expt.	•Theory	•Expt.	•Theory
	•Inner	•-0.052±0.002	•-0.056±0.004	•19.2±0.5	•17.2±2.8
	•Outer	•0.029±0.003	•0.023±0.007	•48.3±3.3	•46.6±3.6

Summary of spectrum characterization

- Measurement was based on Cd-ratio for multi monitor method
- GRUPINT is semi-empirical a combination of computational methods with activation measurements
- Theoretical a combination of computational methods with cross section data libraries
- Measured RCd data agree well with theory & GRUPINT
- RCd data were used to determine f and α parameters
- Data agree well, indicating the suitability of theory
- The theoretical method has been used to determine neutron spectrum parameters of NIRR-1 LEU core
- Method can be used for facilities that do not permit use of Cd

Measurement of Nuclear Data

- Measurement of reactor neutron spectrum averaged cross section data was performed – 1st & 2nd RCMs
- In the 3^{rd} year measurements of σo & Qo were performed on basis of spectrum parameters
- Qo data are based measured RCd data according to

$$Q_O(\alpha) = \frac{f}{(F_{Cd} \cdot R_{Cd} - 1) \cdot \frac{G_e}{G_{th}}}$$

• Data are compared with literature data

Measurement of Nuclear Data

Nuclide	Target material	Qo		σο (b)	
		This work	DC & S	This work	Mughahghab
⁴⁸ Ca	Powder	1.21	1.3	0.85±0.24	1.09 ± 0.07
72Ga	Powder	6.52±0.66	6.69	4.79±1.1	4.73±1.8
75Se	Powder	6.7±2.1	10.8	77.4±5.1	51.8±1.2
76As	Powder	13.9±0.4	13.6	4.38±0.33	4.23±0.08
95Zr	Foil	5.31±0.11	5.31	0.043±0.007	0.0499±0.0024
239U	Foil	101.6±2.5	103.4	2.73±0.03	2.68±0.019
197Au	Foil	15.6±0.3	15.7	98.7±0.1	98.65±0.09

Summary of nuclear data measurements

- Preliminary cross section measurements on some nuclides to assess NIRR-1 facilities
- □ 198Au & other data in good agreement
- 75Se deviates significantly-requires further investigation
- I115Cd, 197Hg, 153Gd, 131Ba, &134Cs are outstanding for lack of relevant target materials

- Validated NIRR-1 MCNP model for spectrum characterization – results in Ann. Nucl Energy, 2007
- □ Finalized determination of σ_f –results in Appl. Rad. Isot. 66, 2008
- Testing of k0-IAEA using SMELS results in J. Radioanal. Nucl. Chem. 2009 (in press)
- A method for determination of neutron spect parameters by simulation has been developed
- □ Good agreement was found between measured and calculated data for NIRR-1 HEU core
- Further investigations on determination of Qo, σo are on going
 3rd RCM, NOV. 17 19, 2008

ACKNOWLEDGEMENTS

- Work supported by IAEA-CRP No:NIR/13278
- IAEA Technical Officers
- □ All CRP participants
- □ CERT management &NIRR-1scientists

THANKS FOR YOUR ATTENTION